MTH 605: Topology I

Practice Assignment VIII

1. Show that cone $C X$ of a path-connected space X is contractible.
2. Show that the Mobius band deformation retracts onto its core circle, but not to its boundary circle.
3. Let S_{g} be the closed orientable surface of genus $g \geq 2$. Consider a separating curve S in S_{g} that separates S_{g} into subsurfaces $S_{g_{1}}$ and $S_{g_{2}}$ as shown in the figure below, and a nonseparating curve C in S_{g} (as indicated).

Figure 1: The surface S_{g}.
(a) Show that S_{g} does not retract onto the curve S. [Hint: Does $S_{g_{2}}$ retract onto S ?]
(b) Show that S_{g} retracts onto the curve C.
4. Find all covering spaces of the Mobius band and the Klein bottle up to isomorphism. [Hint: See Example 1.42 in page 74 of Hatcher.]
5. Compute the fundamental group of the following spaces.
(a) The complement of a finite set of points in \mathbb{R}^{n}, for $n \geq 3$.
(b) The complement of a union of n lines through the origin in \mathbb{R}^{3}.
(c) The quotient space of S^{2} with its north and south poles identified.
(d) The quotient space obtained from taking two copies of $S^{1} \times S^{1}$ and identifying the circle $S^{1} \times\left\{x_{0}\right\}$ in one torus with the corresponding circle in the other torus.
(e) The complement of a finite set of points in the closed orientable surface S_{g} of genus g.
6. Suppose that a space Y is obtained from a path-connected space X by attaching n-cells for a fixed $n \geq 3$. Show that the inclusion $X \hookrightarrow Y$ induces an isomorphism of fundamental groups. Use this to show that the complement of a discrete subspace of \mathbb{R}^{n} is simply connected for $n \geq 3$.
7. The mapping torus $M_{f}(X)$ of a map $f: X \rightarrow X$ is the quotient of $X \times I$ obtained by identifying each point $(x, 0)$ with $(f(x), 1)$. In the case $X=S^{1} \vee S^{1}$ with f basepoint-preserving, compute a presentation for $\pi_{1}\left(M_{f}(X)\right)$ in terms of the induced $\operatorname{map} f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(X)$. Do the same when $X=S^{1} \times S^{1}$. [Hint: Regard $M_{f}(X)$ as built from $X \vee S^{1}$ by attaching cells.]
8. Consider the quotient space X obtained from the solid cube $I^{3}=[0,1]^{3}$ by identifying each square face to its opposite square face via a right-handed screw motion consisting of a translation by one unit in the direction perpendicular to the face combined with a one-quarter right twist of the face about its center point.
(a) Show that X admits a cell complex structure with two 0-cells, four 1-cells, three 2-cells, and one 3-cell.
(b) Using this structure prove that $\pi_{1}(X)$ is isomorphic to the quaternion group of order 8 .

